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Abstract- A method is presented to incorporate the local buckling behavior ofline pipe, determined
from three-dimensional large deformational elastic-plastic shell analysis, into an interactive soil­
structure beam model of a pipeline. The finite element model for the analysis of the pipe as a shell
is described and the influence on the results of the buckling analysis of various load combinations
are examined from the point of view of buckling configurations. moment-·curvature curves and
cross-sectional deformations. A method of extracting the stiffness properties of the pipe from these
analyses is then described and a technique for determining stiffness coefficients from these properties
is developed.

I. INTRODUCTION

Pipelines in regions of discontinuous permafrost are subject to combined loads consisting
of combinations of internal pressure, axial load and bending moment. Overall, a pipeline
behaves as a beam structure. However, the deformations are often large enough to induce
strains that are significantly greater than the yield strain. As a result, the pipe wall may
buckle locally in elastic-plastic manner. Response of the pipeline can be significantly altered
by this local buckling behavior.

A procedure to analyze pipelines for this kind of behavior has been developed by the
authors (Zhou and Murray. 1993a, 1995a). This procedure divides the response prediction
into two steps. In the first step. a three-dimensional shell model is used to analyze local
deformational behavior that includes local buckling, and a set of characteristic cross­
sectional stiffness properties are then abstracted from these analyses. In the second step,
the effects of the local beha vior are integrated into the overall behavior of the line by using
the generated cross-sectional stiffness properties for a beam model, and the response of the
pipeline is then predicted based on this beam model (Zhou and Murray, 1993b, 1995a).

This paper describes analyses of postbuckling behavior of pipe segments under com­
bined loads. Effects of internal pressure and axial load on the postbuckling response are
investigated by analyses of pipe segments under different load combinations. Based on
these postbuckling analyses. the characteristic stiffness properties are defined. These are
taken as input into the beam model in order to predict response of lines in such a way that
the effects of local buckling are properly included (Zhou and Murray, 1993a, 1995a).

The paper first describes the three-dimensional shell model employed. Results of
postbuckling analyses and postbuckling behavior are then examined with respect to
moment--eurvature relationships. buckling modes and cross-sectional deformations.
Following this. cross-sectional stiffness properties are introduced and the procedures to
generate them from shell analyses are described.

2. SIG:\IFICANCE A'<D SCOPE OF POSTBUCKLlI\G ANALYSIS

Postbuckling analysis refers here to nonlinear incremental analysis which is carried out
for deformations well beyond the limit point on load-deflection curves. Postbuckling analysis
as an analytical tool has important implications for thin shell structures such as pipelines.
For structures subjected to imposed deformation. attainment of the load carrying capacity
does not precipitate failure because the structure is not required to carry the associated loads,
which are self-limiting. Instead, the imposed deformations are required to be absorbed by
the structure. However. the hardening and softening characteristics of the postbuckling
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response lead to very different characteristics of localization of the deformation and strain
(Zhou and Murray, 1995a), and this, in turn, determines the deformation limit states for this
particular type of structure (Zhou and Murray, 1993b and 1993c).

In this study, analysis focuses on the phenomenological effects of loading conditions,
and therefore it is confined to one particular pipe geometry with one particular set of
material properties. This is believed to be sufficient to explore the fundamental physical
phenomena. A pipe with outside diameter of 48 inches (1219 mm) and wall thickness of
0.462 inches (11.7 mm) was chosen for this study because this pipe has D/t ratio of 104 and
is susceptible to local buckling. This particular size is that used for the Trans-Alaska
Pipeline (Bouwkamp and Stephen. 1973) and it is probably the largest size used for a major
oil pipeline. The material properties are represented by a bilinear stress-strain model. Based
on the properties of Grade XL65 steel, this model has elastic modulus 29800 ksi (205500
MPa), Poisson ratio of 0.3, yield strength of 63.5 ksi (438 MPa) and strain hardening
modulus of 124 ksi (855 MPa).

The loading conditions investigated consist of constant internal pressure, constant
axial load and variable bending moment. Three levels of internal pressure were chosen to
cover the possible range. They are the pressures producing hoop stresses of 0, 35, and 72%
of the yield strength. The latter percentage was the highest ratio allowed in the previous
design code for Canadian oil pipelines (Canadian Standard Association, 1990). The axial
load is used to simulate the effects of the temperature differential. Its magnitude depends
on both the temperature differential and the longitudinal restraint provided by surrounding
soil. Four levels of axial load were chosen for the low and middle levels of internal pressure.
These are, 0, 10, 20, and 40% of the axial yield load in compression. Five levels of axial
load were chosen to combine with the high level of internal pressure. These are at the ratios
of 0, 20, and 40% for both compression and tension. The highest ratio corresponds to a
temperature differential of approximately 7JC with the pipeline assumed to be fully
restrained in the longitudinal direction. The combination of the different levels of pressure
and axial load described above gives thirteen specimens which are listed in Table 1. In
addition to constant pressure and axial load, bending moment is applied as the active load
for all of the specimens.

A specimen designation is assigned to each of the specimen simulations. It is composed
of three letters followed by a two-digit number. The first letter is P which identifies this
series of specimens as a postbuckling analysis series. The second letter is L, M or H, which
represents low, middle and high levels of internal pressure, respectively. The third letter is
either Cor T, which represents compressive or tensile axial load. The two-digit number is
the nondimensionalized axial load expressed as a percentage of the axial yield load. The
designations of all thirteen specimens are listed in Table 1.

3. FINITE ELEMENT MODEL

The finite element model described below was used for the three dimensional shell
analysis of all pipe segments. The model includes the finite element mesh, and the boundary
and loading conditions.

Table I. Specimen loading and designationst

Axial Load
(asa%ofF,)

Internal Pressure (as a % of p,)
L = 0% M = 35% H = 72%

-40
-20
-10

o
20
40

PLC40
PLC20
PLCIO
PLCOO

PMC40
PMC20
PMCIO
PMCOO

PHC40
PHC20

PHCOO
PHT20
PHT40

tl. Pipe for specimens=48"(1219 mm)x0.462"(1I.7 mm)
DSAW X65 Grade.

~ p, = Pressure to produce all = a,.
3. F, = Aa,.
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Fig. I. Loading and boundary conditions. and symmelric planes of pipe segments.

3.1 Finite element mesh
The pipe segment under consideration has an outside diameter of 48 inches (1219 mm)

and a wall thickness of 0,462 inches (II. 7 mm). The length of the pipe segment was chosen
as 276 inches (7010 mm) which is about 5.5 times the diameter. The pipe segment is shown
in Fig. I. It is simply supported at both ends and subject to a combination of constant
internal pressure, constant axial load and variable moment.

Two symmetry conditions are utilized to reduce the size of the modeL These are the
symmetry conditions in the bending plane and on the mid-span cross-section, which are in
the x-z and )'--z planes, respectively, as shown in Fig. I. The validity of these symmetry
conditions will be further discussed in section 3.2. With these symmetry conditions, only a
quarter of the pipe segment needs to be discretized. The quarter pipe segment is divided
into the main segment and boundary ring with lengths of 132 inches (3353 mm) and 6
inches (15204 mm), respectively, as shown in Fig. 2. The boundary ring is introduced for
simulation of the boundary and loading conditions that are discussed further in the sections
to follow. The main segment is discretized by 48 16-node degenerated shell elements and
the boundary ring by eighteen 4-node shell elements (Stegmilller. 1984). There are a total
of 494 nodes and the mesh is uniform in both the main segment and the boundary ring.
The mesh is uniform in the longitudinal direction because the dominant buckle can be
anywhere along the segment length in the longitudinal direction. Although buckling usually
initiates on the compressive side of the pipe segment, under combination of internal
pressure, axial load and bending moment, it develops and expands in the circumferential
direction and sometimes covers the entire circumference. Consequently, a uniform mesh is
used also in circumferential direction.

The mesh refinement is one of the major considerations. A coarse mesh may not be
able to effectively represent the local deformation in the deep postbuckling region. On the
other hand, overly refined mesh leads to large systems which require excessive solution
time. The particular mesh used here was derived from a series of trials on gradually refined
meshes.

19

boundary ring
discretized by
eighteen 4·node

J
z shell elements

top edge
nod 1 ---........ 457 476

mid·span ]cross '\.. x main segment discretized diameter 8"

secti~n 'L-f---- b_Y_f_o_u_rt--::Y;;-.e_ig_h_t_1_6_.n_O_d_e____+_' 1219 mmshell elements

~ 475 494
bottom edge

1.....~ 1:..::3.::.2'_'(;.:.3.:...35:..:3:..:..m:..:..m..:.:.:...l ... 1~ 52mm)

Fig.=: Cilnbal courdinatl' system and dimensions ~)f lIh.' clLlarkr pipe ~('glncnt.
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3.2 Boundary conditions
Boundary conditions are needed at the mid-span cross-section, end cross-section, and

the top and bottom edges as shown in Fig. 2. The boundary conditions on the mid-span
cross-section, and the top and bottom edges are assumed to be the symmetry conditions.
The symmetry condition on the bending plane is supported, in general, by the observations
from tests (Bouwkamp and Stephen, 1973; Jirsa et al., 1972; Reddy, 1979; Sherman, 1976;
Mohareb et al., 1993). The symmetry condition about the mid-span cross-section is more
of an assumption than a fact. It is only valid if the buckle occurs in the middle of pipe
segment. Nevertheless, because the main objective of postbuckling analysis is to investigate
the behavior of a segment which contains a typical buckle, instead of the pipe segment as
a whole, it is satisfactory to employ the symmetry condition about the mid-span cross­
section provided that either: (a) half a buckle forms at the plane of symmetry: or, (b) an
entire buckle is completely contained in the half pipe segment. With the dominant buckle
completely simulated somewhere in the half pipe segment, as illustrated in Fig. 3, the
loading and deformation characteristics of the buckle can be determined.

Assuming the validity of symmetry conditions as postulated above, the boundary
conditions can be detailed as follows. On the top and bottom edges, the symmetry conditions
are that the displacements in global y-direction are zero, while the rotation about the global
x and:: axes are suppressed. The symmetry conditions on the mid-span cross-section are
more complicated. Let us first define the local shell coordinate system r, s, t. Axis t represents
the direction normal to the shell and axes rand s are in the longitudinal and hoop
directions, respectively. The symmetry conditions on the mid-span cross-section are that
the displacements in the globaly-direction, and the rotations about the t and s axes are
suppressed. As shown in Fig. 3 the pipe segment is allowed to shorten or extend as it
deforms, and the end cross-section would be allowed to move if the mid-span cross-section
were fixed in the x-direction. As an alternative, the mid-span cross-section can be allowed
to move in the x-direction while the end cross-section remains fixed in this direction at mid­
height. As a result the boundary conditions of displacements on the mid-span cross-section
can be modified such that all the nodes on the mid-span cross-section are constrained to
have the same displacement in the x-direction. The boundary conditions of rotation remain
as stated and can be enforced directly by specifying the boundary codes in the local shell
coordinate system.

On the end cross-section, the boundary conditions are that the ,v-direction displacement
at the centroid is suppressed, and the plane of the end section remains plane to simulate
the restraint provided by the rest of the pipeline connected to the pipe segment. Rotation

position of undeformed
pipe segment

mid-span
cross-section

I~ half pipe segment

end cross­
section

Ouantities Defined on Length
of Buckled Segment

Local Curvature
Local Compressive Strain
Local Tensile Strain
Local Axial Strain

Ouantities Defined on Length
of Pipe segment
Overall Curvature
Overall Compressive Strain
Overall Tensile Strain
Overall Axial Strain

Fig. 3. Representative quantities of longitudinal deformations for postbuckling analysis
or pipe seglTIcnts.
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of the end section about the l" centroidal axis, and deformation of the section in the plane
are permitted.

A boundary ring is used to enforce the boundary conditions on the end cross-section
as shown in Fig. 2. The boundary ring is assumed to be elastic and has the same wall
thickness as the main segment. The support at the centroidal axis is modelled by supports
on the horizontal diameter as shown in Fig. I (b), and this approximation is acceptable as
long as the deformation of the end cross-section is symmetric about its horizontal diameter.
Symmetry of the x-displacement about the horizontal diameter on the end section is
enforced by coupling the magnitude of the x-direction displacements for the corresponding
nodal points on the compression and tension sides. Coupling the magnitude of the x­
direction displacements of the corresponding nodal points combines the stiffness from the
compression and tension sides and has proven to be able to prevent out-of-plane defor­
mation at the end section. However. this coupling is only valid if symmetry about the
horizontal diameter is maintained on the displaced end cross-section. The elastic boundary
ring helps to maintain this symmetry.

3.3 Applicatio/ls of/o(/{Is
The pre- and post-huckling analyses of the shell segments have been carried out using

the NISA program (Stegmiiller, 1984). This program has been validated and used for a
number of studies into shell behavior (see for instance Brendel and Ramm, 1980). Internal
pressure is applied on the elements as an element load which is transformed into work
equivalent nodal loads by the program. The external axial loads of equal magnitude and
opposite direction are applied at the end cross-section and the mid-span cross-section. The
axial load on the end section is uniformly distributed. The forces on the mid-span cross­
section can be distributed in any manner because the axial displacements are coupled. The
bending moment on the end section is applied as a set of nodal forces which are computed
from a linear distribution. The elastic boundary ring helps to distribute the nodal loads and
reduces stress concentrations which might cause initiation of premature buckling. Both
internal pressure and axial load are maintained constant for a particular specimen but vary
from specimen to specimen. The bending moments are determined by the equilibrium
requirement after a certain overall curvature is imposed on the pipe segments in accordance
with an arc-length solution technique (Zhou and Murray, 1995b).

3.4 A hriej/lole OIl I!le solulio/l lechnique
Shell structures may have severely nonlinear response due to large displacement effects

and nonlinear material properties. For thin shell structures, development of local buckling
leads to softening behavior in the postbuckling region. Softening behavior refers here to a
characteristic of response in which moment carrying capacity decreases as the corresponding
curvature increases. Prediction of response for this type of behavior is a challenge of
numerical solution techniques.

A solution technique based on an equilibrium iterative procedure combined with an
arc-length control technique has been used to carry out postbuckling analysis in this study.
The procedure used is an arc-length method (see Schweizerhof and Wriggers, 1986), and is
similar to that described by Bellini and Chulya (1987) but is considered to be an improve­
ment over that presented in this latter paper. Details of this solution technique are discussed
elsewhere by the authors (Zhou and Murray, 1995b).

4. POSTBlCKLl!\G BEHAVIOR OF Ll!\E PIPE

4.1 Represe/ltalio/l ojde!imllalio/ls
Nonlinear (post buckling) analysis predicts the deformation, and the history of defor­

mation, of the pipe segments. Computer renderings of typical configurations predicted by
finite element analysis for post-buckled pipe segments are shown in Figs 4-9. Postbuckling
behavior of these pipe segments with respect to the loading conditions is discussed sub­
seq uently, based on the analytical solutions for the 13 specimens listed in Table I. However,
in order to present the predicted response, two groups of representative quantities are
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first defined. One is based on longitudinal deformations and the other on cross-sectional
deformations.

Longitudinal deformations are described by average curvatures and average strains at
the centroid of the cross-section in a similar way as for beam structures. That is, the relative
rotations and relative shortening or extension of a specified segment are divided by the
original length of the segment. Local deformations can be best represented by average
curvature and strains defined on the buckling segment. These are referred to as the local
curwture, cPL' and the loml strain. f L, respectively. The buckling segment is a small segment
that is bounded by two plane sections and contains only the most significant buckle as
shown in Fig. 3. The original length of the buckling segment is referred to as the principal
wavelength. For comparison, average curvatures and strains are defined on the total
pipe segment shown in Fig. 3 which results in the overall curvature, cPo, and the overall
strain, GO'

Three quantities are proposed to represent cross-sectional deformations. They are the
diametric differential. Dd , diametric expansion, De, and radius differential, Rd' These are
defined as

D01l1 - DIn 000/D = ------ X I /0
d D

(
D o1l1 + Din ) 0001D =----- - - I X I /0

" D

RL -RR = _"_"I '_"p X 100%
d R

(1)

(2)

(3)

where D and R are the nominal diameter and radius of the pipe segment, respectively, and
the other quantities are defined in Fig. 10. The measures Dou' and Din are the diameter in
and out of the bending plane: and Rhol and Rtop are the distances from the centroid of the
cross-section to the extreme "tensile" fiber and "compressive" fiber in the bending plane,
respectively, as shown in Fig. 10. The diametric differential is similar to the out-of-round­
ness, which is a commonly used measurement. and is defined as (see, for example, Price
and Anderson, 1991)

f (
Dill", - DillIn) 10001out-o -roundness ="iJ-- X /0 (4)

where Dill", and Dllllll are the maximum and minimum diameters of the cross-section, as
shown in Fig. 10.

Diametric differential is intended for the deformation pattern in Fig. 10(a) where the
dimension of the cross-section increases in the out-of-plane direction and decreases in the
in-plane direction. It should be noted that the out-of-roundness is the absolute value of the
diametric differential. While the former is commonly used in the oil and gas industry, the
latter is the more informative because if differentiates between the two basic buckling
modes. Diametric expansion is intended for the deformation pattern shown in Fig. lO(b)
where the dimension of the cross-section increases in both the in-plane and out-of-plane
directions. Radius differential represents components ofcross-sectional deformations which
are not symmetric about the .1'-axis. This measure would exclude ovalization and focus on
deformations due to local buckling. It can be used as an indicator of initiation of local
buckling.

4.2 lWomenl--currature relationships
The moment-local curvature curves are shown in Figs 11-13 for specimens with low,

middle and high levels of internal pressure, respectively. In these figures, the moments and
local curvatures are normalized by the yield moment and yield curvature. The yield moment
is the moment which. by itself. in the absence of internal pressure and axial force, produces
initial yielding in the extreme fibers on both the compression and tension sides of the pipe
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Fig. 4. Finite element prediction of deformed configuration for Specimen PLC40.

Fig. 5. Finite element prediction of deformed configuration for Specimen PLCOO.
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Fig. 6. Finite element prediction of deformed configuration for Specimen PMC40.

Fig. 7. Finite element prediction of deformed configuration for Specimen PHC40.
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Fig. K. Finite element prediction of deformed configuration for Specimen PH COO.

3023

Fig. 9. Finite element prediction of deformed configuration for Specimen PHT40.
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for diamond buckling mode for bulging buckling mode
Fig. 10. Representative quantities of cross-sectional deformations for postbuckling.
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Fig. 11. Moment-local curvature curves for specimens with low level pressure.
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Fig. 12. Moment-local curvature curves for specimens with middle level pressure.
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Fig. 13. Moment--Iocal curvature curves for specimens with high level pressure.

for the bilinear elastic-plastic model. This is calculated to be 52000 kip-in (5900 KN m).
The yield curvature is the curvature corresponding to the yield moment. It is calculated as
0.8965 x 10-4/in (0.353 x 10s/mm).

In general, the pipe segment experiences a linear elastic region up to the initiation of
yielding, a gradual yielding region, and then a softening region (see, for example, Specimens
PLCOO and PLC lOin Fig. 11). The elastic region exists in every specimen except Specimen
PHC40 (see Figs 11-13) where the constant internal pressure and axial load initiate the
yielding before any moment is applied. The gradual yielding region produces a yield plateau
which usually contains the limit point for the maximum moment as for Specimens PLCOO,
PLClO, PHT20 and PHT40. The length of this yield plateau decreases as the levels of
pressure and compressive axial load increase and virtually disappears for many specimens.
The softening region exists in every moment-curvature curve. Softening in moment-cur­
vature curves refers to behavior which exhibits decreasing moment-carrying capacity with
respect to increasing curvature.

The maximum moment carried by specimens is greatly affected by the pressure and
axial load. It varies from a maximum of 1.23 times the yield moment for Specimen PLCOO,
where no pressure and axial load are applied, to 0.11 times the yield moment for Specimen
PHC40, where the maximum pressure and compressive axial load are applied. The capacity
in the postbuckling region is affected by pressure and axial loading in a similar way as for
the maximum capacity. The effects of axial load are illustrated in Figs 11-13 at different
levels of pressure. In a similar way. the effects of pressure are illustrated for constant axial
force in Fig. 14, where solutions with zero axial load are shown.

As pipe segments soften in the postbuckling region, deformations localize into a
dominant 'wrinkle' in the buckling segment (see, for instance, Mohareb et al., 1993). While
the buckling segment continues to be loaded (in the sense that deformations continue to
increase), the rest of the pipe segment unloads elastically. Energy released from elastic
unloading further increases localization of deformation in the buckling segment. Figures
15-17 show the axial strain--curvature curves, which are referred to as deformation paths,
for specimens PLCOO, PLC40 and PHC40. Deformation paths for the buckling segment
and for the pipe segment as a whole are referred to as the local and overall deformation
paths, respectively. The localization of deformation is clearly demonstrated in all these
figures where the local curvature and axial strain are significantly larger than the overall
curvature and axial strain. For specimens such as PLCOO, the localization is essentially
associated with flexural deformation. This is indicated by the large difference in curvatures
and relatively small difference in axial strains shown in Fig. 15. The contribution of axial
deformation to localization becomes more important as the pressure and compressive axial
load increase. This is illustrated by Figs 16 and 17. The solutions of the 13 specimens
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Fig. 14. Moment local curvature curves for specimens without axial load.
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Iig. 17. Deformallon paths of Specimen PHC40.

indicate that internal pressure and compressIve axial load Il1crease the localization of
deformation.

4.:1 Bucklinq IIwdcs

Local buckling deformations have been predicted to large amplitudes. as is shown in
Figs 4 9 which are true scale renderings of finite element results. (Note that the linear
dimension of the sq uares depicted on the loading plane is equal to the undeformed diameter
of the pipe.) The buckling configurations can be grouped into two types of modes based
on their common characteristics. These are denoted as diamond modes and bulging modes.
A typical diamond mode is shown in Fig. 4 where the buckle consists of several dips in a
regular pattern. The dips have a diamond shape and the pipe wall in the dips moves toward
the centroid of the cross-section. The mode shown in Fig. 5 is sometimes referred to as the
Brazier mode (Timoshenko and Gerc. 1961). However. it is classified here as a diamond
mode since it can be viewed as a special case with only one large dip. A typical bulging
mode is shown in Fig. 6 where a bulge is developed and the pipe wall in the bulge moves
outward. The buckling modes shown in Figs 6-9 have this common characteristic and
therefore all arc classified as bulging modes. The multiple wrinkles in Fig. 7 are formed by
continuing the analysis beyond the softening range associated with the first wrinkle until a
second wrinkle forms in a manner similar to the first.

It is clear that an entirc spectrum of buckling configurations can occur. It is also clear
that the type of buckhng mode is primarily dependent on the internal pressure. Specimens
\vithout pressure bucklc in diamond modes no matter what axial load is applied. However,
specimens with middle and high levels of pressure buckle in bulging modes. The results
show that. for the geometric and material properties used in this study, internal pressure at
a relatively low level. certainly not higher than 0.:15 p,. can prevent the pipe segment from
buckling in the diamond buckling mode and force it to buckle in a bulging buckling mode.
This conclusion is likely to extend to pipe segments with D/t ratios lower than 104, since
shells with higher Dn ratios have a greater tendency to buckle in diamond modes.

The effects of axial load on buckling modes are also illustrated in Figs 4-9. In addition
to the differences bctween the diamond and bulging buckling modes. obvious differences
exist between the buckling modes of Specimens PLCOO and PLC40 for the diamond
buckling modes. and between Specimens PHT40 and PHC40 for the bulging buckling
modes. The principal difference is in the extent of the buckles in the circumferential
direction. The buckles of Specimens PLCOO and PHT40 are confined to the compressive
side of the pipe segment. The buckles of Specimens PLC40 and PMC40, however, cover
most of. or the entire. circumference. This is because of the different combinations of the
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Fig. 18. Cross-sectional distortion for Specimens PLCOO. PMC40. and PHCOO.

axial deformation and flexural deformation. When the flexural deformation dominates, the
compressive region on the cross-section is confined to the compressive side and so is the
buckle, as shown in Figs 5. 8 and 9. When significant compressive axial load is applied, as
for Specimens PLC40. PMC40 and PHC40, the compressive region extends over most of
the cross-section and buckles develop gradually to cover most of the circumference. Tensile
axial loads help to confine the buckle to the compressive side of the cross-section. To
distinguish between these two different characteristics, the designations of jtexural delor­
mation dominated and axia! de/im}]alion dominated buckling modes are used to distinguish
between buckling modes confined to the compressive side and extended over most of the
circumference. respectively. Both diamond and bulging buckling modes can be dominated
by flexural or axial deformation. The compressive axial load and internal pressure both
accentuate the axial deformation and lead to axial deformation dominated buckling modes.

4.4 Cross-sect iO!1a! de/im}](/{ io}]s
Cross-sectional deformation becomes important because its measurement permits the

establishment of criteria by which limit states of excessive deformation can be defined.
Depending on the buckling mode, different patterns of cross-sectional deformation are
observed. Typical examples are shown in Fig. 18 for Specimens PLCOO, PMC40, and
PH COO. For each of the deformed cross-sections. there is a reference section, shown by the
dashed line, which has the centroid at the same location as for the deformed section but is
undeformed. The scale of deformation is one to one of all the deformed cross-sections and
the figures show the real proportions of the deformation.

Specimen PLCOO is a typical example of a flexural deformation dominated diamond
buckling mode. For this type of buckling mode. the diameter in the bending plane, called
the in-plane diameter, is significantly reduced while the diameter perpendicular to the
bending plane. called the out-of-plane diameter, is increased. An appropriate measurement
of the magnitude ofcross-sectional distortion for this type of buckling mode is the diametric
differential defined in eqn (I) which is the normalized differential between the out-of-plane
and in-plane diameters. The cross-sectional deformation develops from being negligible at
the onset of buckling to being very significant in the deep postbuckling region. The diametric
differential-curvature curve for Specimen PLCOO, along with those for other specimens
with low pressure level. is shown in Fig. 19.

Examples for the bulging type buckling modes are shown in Figs l8(b) and l8(c). for
Specimens PMC40 and PHCOO. respectively, where the former is an axial deformation
dominated bulging buckling mode and the latter is a flexural deformation dominated
bulging mode. For bulging type buckling modes, both in-plane and out-of-plane diameters
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increase as the curvature increases. When the buckling is dominated by axial deformation,
the increase in diameter is more uniform along the circumference, as in Fig. l8(b) which is
typical of axially symmetric buckling modes. When the flexural deformation dominates,
the increase of in-plane diameter is larger than that of the out-of-plane diameter as shown
in Fig. l8(c). One of the representative measurements for the magnitude of cross-sectional
deformation for bulging type buckling modes is the diametric expansion defined in eqn (2)
which is the normalized average increase of in-plane and out-of-plane diameters. Diametric
expansion-curvature curves for specimens with high level pressures are shown in Fig. 20.

). STIFF:'\iESS CHARACTERISTICS REPRESENTED BY
STIFFNESS-PROPERTY DEFORMATlOl\ RELATIONS

One of the objectives of postbuckling analysis is to define and generate characteristic
stiffness properties of the pipeline segment throughout its deformation history. These
stiffness properties may then be input into an analysis of the pipeline based on a beam
model. As a result. the local behavior, dominated by local buckling, is integrated into the
overall response of the pipeline. A primary objective of this paper is to discuss a process by
which the stiffness properties may bc determined. We now focus on the definition of
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Fig. 21. Reference systems for stress resultants and deformation coordinates.

stiffness properties, the stifFness-property-deformation (SPD) relations and the procedures
to generate and apply SPD relations.

In the derivations, the subscript "c" will refer to quantities at the centroidal axis of
the cross-section at the end supports of the segment shown in Figs I and 3. The subscript
"0" will refer to quantities at a longitudinal axis through the centroid of the cross-section
at an arbitrary position along the length, and the subscript "s" will refer to quantities at a
longitudinal axis through the centroid of the transformed section at an arbitrary position
along the length, as illustrated in Fig. 21. Quantities which are the same for both the "s"
and "0" axes are not subscripted.

5.1 Definition of cross-sectionalstiffncss coefficients
Assuming that the stress resultants F and /VI" are single valued integrable functions of

the generalized displacements ep and E" the increments of stress resultants may be expressed
by the chain rule as

(elF
d 'F = - d

r (::p

1"'I/\.1
d ',\;/" = --::,- "d

c

(Sa)

(5b)

in which the partial derivatives are the incremental stiffness coefficients and the pre-super­
script t refers to the structural configuration at time t, consistent with the incremental
notation of Bathe (1982). Using a change in notation these equations may be written as

d'F= K
1

d +K,dlr/) (6a)

(6b)

(7)

where the stiffness coefficients in eqns (6) are defined by identifying corresponding terms
between eqns (5) and (6) and it has been assumed that the stiffness coefficients in eqns (6)
are symmetric. This is proved in Appendix A, where it is shown that

(e'F (e'A1" .
K,='-= =('/(1

I"' 'ep r II:"

in which e is the eccentricity between the center of elastic stiffness and the center of the
tangent modulus stiffness, as shown in Fig. 21. For brevity these two centers of stiffness are
referred to as the centroid and the tangent c('nlroid, respectively.

It is necessary to evaluate the stiffness coefficients K 1 and K1, and the eccentricity, e, in
order to integrate eqns (6) numerically. This is not as straightforward as it may appear
because these coefficients must be derived numerically from the shell solutions for the
segments, and the incremental stiffnesses which are directly available from the segment
solutions do not correspond with those appearing in eqns (6). By definition, the coefficients
in eqns (5) and (6) are partial derivatives with respect to each of the generalized dis­
placements while the other generalized displacement is being held constant. The constraint
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(8)

condition on the second generalized displacement. while the first is incremented is not
satisfied in the segment solutions. Therefore. we define another set of quantities in the
follovving. related to the segment solutions. We will then show how the stiffness coefficients
of eqns (6) are derivable from this second set.

5.2 Slijllll'ss propl'rlil's drriwble/i'oll1 .11'91111'111 solulions
The shell model of a pipe segment that is used to determine the pipe stiffness has been

shown in Fig. I. The reference axis is taken to be the centroidal axis. A solution path for
an equilibrium solution is traced by maintaining Fe constant and incrementing Me- When
a small increment of 1'v1c is applied, the pipe deforms along its total length. The region of
greatest interest is thc region where the wrinkle is developing, as shown in Fig. 3, and for
which the analyst wishes to construct relations such as moment-curvature curves. We define
a number of responsc characteristics. that are associated with the loading, which we will
call Slifflll'sS propl'rlics.

(I) Properl." I :jfnural sli//iil'ss. IKh The flexural stiffness is evaluated by applying an
increment in moment, /1,'[1,1" while holding the axial force constant. It is defined at the
location of the wrinkle as

r'1\{,
1Kh = with 'F = constant.

(' Iq)

This stiffness property is simply the slope of one of the moment--eurvature curves, as plotted
in Figs 11··15. However. the reader should note that the constraint part of this equation,
which appears behind the relational part, is as important as the relational part. [This
statement is also true for subsequent equations, such as eqn (9).]

In addition. it is apparent that M" "# 1'v( and, therefore, the determination of the
moment-curvature curve from the incremental analysis requires considerable processing of
the numerical results produced by the incremental analysis of the specimen (see Section
5.3).

(2) Propert\" 2: axial .Ili/lizcss. lK", The axial stiffness is evaluated by applying an
increment of axial force. I1F,. to the ends of the segment shown in Fig. I, while keeping
l1J'vl, = o. It is defined as

('F
'K = --- with d 'AI" = 'c 'I'" d 'Fe-

d ;:
(9)

The constraint part of this equation arises from the fact that the moment along the length
changes as a result of the eccentricity. '1',,, even though 11M, = O.

(3) Propert\" 3: Ihl' amplificalioll faclor. Ie. For the loading associated with Property
2 the increase of moment at the centroid at the location of the wrinkle may be expressed,
by statics. as

(10)

Since the first term on the right-hand side of eqn (10) is zero. factoring the last term yields
the constraint in eqn (9), and leads to the definition of the amplification factor. 'e, as

'Fe·d'r"
'C= 1+ (II)

Knowing 'e the change in moment at the wrinkle can be evaluated by the constraint
relationship in eqn (9) whenever a change in end force occurs.

(4) Propl'rl." 4 : location oj"cl'l1lroid, IV". The location of the centroid of the cross section
relative to its original configuration can be expressed as
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(12)

(5) Property 5: location or tangent centroid, lyO' The location of the tangent centroid
of the cross section (note that this term has been defined above) can be expressed as

J
"E'rd A
A

'I' = ----
." I" Ed A

• I

(13)

where 'E is the tangent modulus (for the proper sense of L11;) and ')' is the coordinate of the
point measured in the y direction of Fig. 21 (which is the global .:;-direction of Fig. I). Note
that the coordinate system of Fig. 21 is being used because it is consistent with a normal
two-dimensional beam model whereas the coordinate system in Fig. I is' for the shell
analysis.

The five properties above are collectively defined as the stiffness-properties of the pipe,
all of which are dependent on the deformations of the pipe. These properties may be
determined from the configuration of the three-dimensional shell. according to their defi­
nitions above, at any stage of deformation on the path of an equilibrium solution. The
result is to produce a set ofstiflness-property-dejorl71ation relationships (i.e. SPD relations).
For convenience in producing SPD relations, SPD relations are defined herein in the form
of Stiffness-Property-Local-Curvature relations at specified constant levels of axial load.
The procedure to generate a set of SPD relations is discussed in Section 5.3.

5.3 Generation ojSPD relations
Three-dimensional shell analyses of a pipeline segment, as described in Section 3, are

needed to generate SPD relations. The average response in the buckled segment is used to
construct the SPD relations. In principle the buckled segment could be located anywhere
on the pipeline segment, as indicated in Fig. 3. although it is more likely to be located in
the central part than at the ends. The geometric and material properties for the shell model
are the same as those of the pipeline to be analyzed in the beam model.

Two types of run of the shell analysis. which can be called the primary run and
secondary runs, respectively, are necessary to define the tive SPD relations at each of the
specified axial loads. The primary runs starts from the initial state and proceeds incremen­
tally at proper step-sizes under constant axial load, constant internal pressure and incremen­
tal bending moment. The primary run is stopped when the deformation of the pipeline
becomes large enough so that the pipeline is obviously no longer operational. The secondary
runs start from any equilibrium state on the path of the primary run, and consist of a one­
step incremental solution of relatively small step-size under constant applied moment,
constant internal pressure and incremental axial load. The secondary runs may be initiated
from restart files generated during the primary run, after the primary run is completed.
They are stopped after one step.

The primary run provides the information to construct three SPD relations at the
specified axial force. These are: the moment curvature relation which defines the flexural
stiffness, 'Kb of eqn (8); the 'I',,-curvature relation defining the location of the centroid by
eqn (12); and the 'y,,-curvature relation defining the location of the tangent centroid. as
given by eqn (13). The moment~urvaturerelation comes naturally out of the primary run
where moment and curvature are defined as the average values on the buckled segment.
The location of the centroid. '1'", and the tangent centroid. '.I'", are obtained by integration
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over the cross-section. The integration should be carried out over several cross-sections and
their average is used to define SPD relations for the buckled segment.

The series of secondary runs along the path of the primary run at proper intervals
provides the information to construct two SPD relations at the specified axial force. These
are the axial stiffness (i.e.-'K,.}-curvature relation defining the axial stiffness of eqn (9), and
the 'e-curvature relation defining the amplification factor of eqn (11). The axial stiffness
'Ka can be obtained according to the definition because the constraint in eqn (9) is satisfied
in the secondary run. The amplification factor can be evaluated since the increments of'F
and '['0 are available from the solutions of the secondary runs.

5.4 Applicution oj" SPD relations
With the SPD relations established, the stiffness coefficients of eqns (6) and (7) can be

expressed in terms of the stiffness properties as follows. First, the eccentricity e of Fig. 21,
as required for the evaluation of K, in eqn (7). may be determined from the positions of
the centroids as

(14)

Next, eqn (6) can be used to express the conditions associated with Property 1. The
constraint part of eqn (9) can be expressed using eqn (6a) as

from which

dc:o = -ed¢.

Substituting eqn (16) into eqn (6b) and factoring d ¢

(15)

(16)

(17)

(18)

Dividing by d¢. and recognizing that the result corresponds to the definition of eqn (8) we
have

i",IA!o )
'Kh =-- = Kc-e-K\.

a'¢

Next, eqns (6) are used to express the conditions associated with the definition of Property
2. The constraint part of eqn (9) can be expressed by eqn (6b) as

(19)

Solving for d l ¢ yields

(20)

Substituting this into eqn (6a), grouping terms and factoring dlFand d'eo. results in

(21)

where the latter equality arises from a recognition that the left hand side is the quantity
defined in eqn (9) for Property 2.

Equations (18) and (21) can be solved simultaneously for the stiffness coefficients K\
and Kc' to yield

(22)

and
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(23)

Each of the stiffness coefficients in eqns (22) and (23) is dependent on all five stiffness­
property-deformation quantities. When these are known, the behavior of the pipeline­
beam can be predicted by the direct stiffness technique, including the effects of plastic
deformation and local buckling, by integrating eqns (6). The technique for carrying out the
beam analysis, and the verification that the integration of eqns (6) yields acceptable results
when the stiffness coefficients have been determined in the above manner, is addressed in
Zhou and Murray (l993a, 1995a).

6. CONCLUSIONS

The paper has described a three-dimensional shell model for postbuckling analysis of
pipeline segments. Solutions are obtained for a particular pipe subjected to several loading
conditions and are presented in terms of both longitudinal and cross-sectional measures of
deformation as proposed herein.

Postbuckling behavior is discussed with respect to the characteristics of moment­
curvature curves, buckling modes and cross-sectional deformations. Both internal pressure
and axial load are found to have significant influence on the postbuckling behavior.

To integrate effects of local shell buckling into overall response of pipelines, a set of
stiffness properties are defined in terms of SPD relations with respect to the deformation
path. A procedure to generate SPD relations is described. The stiffness coefficients to
evaluate the stiffness of the pipeline as a beam, including the effects of local shell buckling,
are then expressed in terms of the stiffness properties.
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APPENDIX

Derivation a/equation (7)
Assume an instantaneous center of stiffness (equivalent to the centroid of a transformed section for the

tangent modulus E values) exists, and is located at a point s at a distance of e from the centroid, e, of the cross
section, as shown in Fig. 21. The generalized stiffness relations are then uncoupled with respect to the s axis and
we may write, for an element of unit length,

(AI)

For plane sections the geometry relating the generalized displacements between the two axes is

(A2)

in which T is the geometric transformation matrix and it is recognized that cP is the same for each system of
displacements. By the theorem of contragredience, the force transformation matrix is TT, and the stiffness
relationship between the forces and displacements referenced to the centroidal axis is

where K" represents the matrix product and may be expressed as

(A3)

with K, being defined as

K, = [K'eK,
eK'J
K,

(M)

K, = K+e'K,.

When compared to eqns (5) and (6), eqns (A3) and (A4) establish the validity of eqn (7).

(AS)


